
 

Abstract—The dynamical model of the fuel-rate to thrust of a 

laboratory turbo reactor engine is experimentally identified. By 

applying recursive least squares identification several linear 

models corresponding to various operating conditions are 

obtained. In addition, the analysis of the characteristics of the 

engine shows the presence of a hysteresis loop. These models 

are combined in order to form a nonlinear dynamical model of 

the process. The resulting nonlinear model captures the 

dynamics over the whole operating range of the engine. The 

results are validated through real time experimental tests. 

Although there are several reports on gas-turbo-engine 

identification, models of the fuel-ratio to thrust dynamics are 

not commonly reported. 

I. INTRODUCTION 

High performance aerospace turbo engines demand the 
introduction of several control loops in the engine  
sub-systems. As is pointed out in [1], the multi-mission 
requirements of new aircraft demand a significant increase of 
the propulsion system capabilities. As a result gas  
turbine-engines are nowadays more complex with 
corresponding increases in the complexity of the control 
systems [1]. In order to design adequate control systems for 
the constant demand in performance, reliable models are 
needed. This aspect has taken additional relevance together 
with the development of turbo-engines control systems. 

Turbo-engines identification has been a key factor for the 
improvement of their performance and capabilities under 
closed loop schemes. In practical applications the most 
effective and used models for control design are based on 
frequency domain transfer functions [2]. Nowadays, more 
sophisticated models have been proposed. For instance, a 
model for active surge control of an engine is presented and 
validated with experiments in [3]. In this article lump 
parameters are introduced in order to define a non-linear 
dynamical model. A similar approach relying on the 
thermodynamic nature of the process is presented in [4]. An 
interesting contribution to the subject is reported in [5], in 
which several identification techniques are applied in the 
search of efficiency and cost effectiveness. In [5] engine 
identification using only ambient-noise data, multi-sine 
testing, frequency domain identification, least-squares with 
optimal smoothing and multi-objective genetic programming 
methods are reported. 

The availability of high computational power allows the 
application of genetic programming and fuzzy logic 
techniques, as reported in [6,7,8]. 
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The relevance of accurate modeling is still fundamental, 
even for control system designs robust to model uncertainty 
[9]. 

Most of the identification works reported aim at finding a 
dynamical representation which considers the fuel rate as 
input and the shaft velocity as output. In occasions, the 
pressure and temperature changes along the engine working 
cycle are also reported. The main reason for the lack of thrust 
models is that, although the major objective of the turbo 
engine is to produce thrust, it is not easy to measure this 
variable during flight. Therefore, most of the models are 
intended to determine the internal variables accurately in 
order to obtain adequate estimations of the engine thrust. 

The aim of this paper is to identify a dynamical model 
which considers the fuel-rate as input and the engine thrust as 
output. For this purpose the laboratory gas turbine engine 
developed by Turbine Technologies LTD model ML-401 is 
used. The set-up of this engine allows measuring the  
fuel-rate and the engine thrust through a load cell system. In 
addition to the shaft revolution measurement, this platform 
also allows the measurement of several other variables such 
as the temperatures and pressures at the: compressor inlet, 
compressor exit, turbine stage inlet, turbine stage exit and 
engine exit. However, the present work focuses on the flow-
rate to thrust dynamical model since this relationship is not 
commonly addressed in the literature and may be used in 
order to validate the thermodynamic internal model of the 
engine. 

A set of experiments at various operating conditions were 
performed and the data collected saved for analysis. With 
these data a typical recursive least squares algorithm was 
applied off-line. The zero/pole structure of the system was 
elucidated by using the quadratic error and the process 
bandwidth characteristics. In addition, a characterization of 
the static flow-rate to thrust relationship was made. This 
characterization resulted on the identification of a nonlinear 
hysteresis loop. The final model is a mixture of the mean 
estimated linear dynamics and the mean nonlinear static gain.  

Finally, the model was experimentally validated. This 
validation shows that the model reflects the main 
characteristics of the engine and could be used for either 
closed loop controller design or to predict the effective thrust 
by measuring only the fuel-flow. The success of the modeling 
procedure even in the presence of a high level of measuring 
noise, due to electrical noise and the engine vibrations, 
suggests that this approach may be used for other turbo-gas 
engines with simple and low-cost measuring devices. 

II. A LABORATORY TURBO REACTOR ENGINE 

The turbine-gas-engine used in this study is the model 

SR-30 produced by Turbine Technologies Ltd. The engine 

includes various pressure and temperature sensors, a  
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load-cell for thrust measurement, a custom winding for 

reading RPM, and a fuel-flow-rate measurement. The 

maximum nominal thrust is 89 N at 87000 RPM. At this 

regime the device ingests 0.5 kg/s of air. The length of the 

engine is 0.273 m and the exit exhaust diameter is 5.715 cm. 

 The engine includes pressure transducers in the 

compressor inlet and exit, in the combustion chamber, in the 

turbine exit, and in the thrust nozzle exit. It is build up with 

K-type thermocouples in the compressor inlet and exit; in 

the turbine inlet; and exit and in the thrust nozzle exit. 

 Data acquisition is available through a PCI 4351, A/D 

board with 24 bit resolution for 16 analog inputs with a 60 

samples/s capability and a Virtual Bench Logger data 

acquisition program for monitoring the measured variables 

on a PC.  It is important to note that the actual practical 

maximum sampling frequency of this system for the selected 

variables is 13.15hz since the system operates with a 

multiplexing data acquisition scheme. This figure is 

important since the vibrations and electrical induced on the 

load-cell are of much higher frequency. This produces an ill-

posed noise problem in the measured thrust signal. Although 

it is technically possible to use an A/D interface with a better 

sampling rate, this would not be cost-effective. Therefore, in 

this article a procedure to reduce the effect of  

high-frequency noise and vibrations, other than the use of a 

better A/D interface, is introduced. 

 Starting the engine requires an external source of  

high-pressure air at 689 kPa to spin-up the rotor to 10000 

RPM. Thereafter, fuel injection and ignition starts the 

engine. Fuel injection is controlled manually through a lever, 

which adjusts a valve constricting the fuel flow to the 

engine. 

III. STATICS 

The typical operating condition for a gas turbine is to 

operate in a steady regime. Therefore, accurate prediction of 

the total thrust in such conditions is important. In order to 

elucidate the steady state gain of the engine, the input fuel 

flow was varied in slow stair sequences as the one shown in 

Fig. 1 and the produced thrust was measured using the load 

cell (Fig. 2). 

The mean steady state thrust for each input level of 

figures 1 and 2 was calculated. A graphical representation of 

the relationship between the measured average static trust 

and the measured fuel flow rate is shown in Fig. [3].  

 

Fig. 1.   Experimental fuel flow input 

 

Fig. 2.   Experimental thrust for the input of Fig. 1. 

By observing this figure the following remarks can be 

made: 

 There is a nonlinear fuel flow/thrust relationship. 

In particular, it seems that the nonlinearity induces an 

increase of the thrust/fuel-flow rate as the fuel-flow 

increases. 

 The system presents a hysteresis behavior. This 

hysteresis characterization has not been previously 

reported for the thrust and indicates that the system 

operates over hysteretic loops for the trust dynamic. It 

is well-known that the characterization of hysteretic 

loops is a key factor when designing  

high-performance automatic control systems.  

Nonetheless, it was found that the hysteresis loop was 

negligible when the machine was operated with 

smaller fuel-flow to thrust ranges.  

 

Fig. 3.   Static-thrust/fuel-flow relationship. 

Using the least squares curve fitting method a nonlinear 

approximate static-thrust/fuel-flow gain was estimated for 

each of the hysteresis curves. The resulting approximate 

functions, denoted as F1 and F2 for the upper and lower 

curves respectively, are also shown in Fig. 3.  
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Where 
fF  denotes the input fuel-flow in Gal/hr. 

As mentioned before, it was observed that for small-range 

fuel-flow maneuvers the hysteresis loop is reduced. In those 

cases it is preferable to use a mean static-thrust/fuel-flow 

gain.  
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20.10942528 0.3723699 1.9401707f fm F FF     (2) 

Fm was calculated considering all the data used for 

calculating the polynomials F1 and F2 of eq. (1); i.e. by 

“mixing” the positive and negative slope data. 

IV. DYNAMICS 

The dynamical behavior of the thrust response is 

important when a high-bandwidth automatic control of the 

air speed is required. In these cases, a feedback controller 

may operate the turbo reactor in non-static regimes. 

A. Signal analysis 

The initial experimental data indicated that a precise 
estimation of the transient characteristics of the process by 
calculating typical factors, such settling time and  
over-shoot, would be difficult because of the amount of noise 
in the measured input/output signals [13]. That is, a direct 
estimation by using the step response of the system is not 
adequate due to the measurement conditions. A first step 
would consist on the use of traditional linear filters which 
could improve the signal/noise ratio. This may be possible if 
the noise appears at a frequency rage clearly distinct from the 
process dynamics [13]. 

In order to analyze the noise and vibrational frequency 
ranges, the motor was operated in a constant fuel-flow regime 
with the maximum allowed sampling frequency (13.15hz). 
The total thrust was measured (Fig. 4) and its spectrum 
calculated using the fast Fourier transform (FFT). The low 
frequency (DC) components of the signal were discarded so 
that the analysis is focused only on the higher frequency 
components of the signal. The resulting spectrum, shown in 
Fig. 5, did not revealed significant high frequency 
components. Only a low frequency component (around 
0.5rad/s) was identified. Therefore, it was not possible to 
reduce the high-frequency measurement noise and the effects 
of the vibrations through direct filtering of the measured 
signal; it is not possible to assess the cut-off frequency of 
such filter because it would appear that the noise is “almost 
white” (i.e. present at all frequencies).  

B. Least squares identification 

Since direct filtering of the measured signal was no 

possible, it was opted to estimate the plant dynamics using 

an algorithm which able to reject high levels of noise. In this 

case the recursive least squares algorithm was chosen for 

identifying the transient dynamics. 

 

Fig. 4.   Measured thrust in the constant fuel-flow experiment. 

 

Fig. 5.   Spectrum of the measured steady state thrust measurement (low 

frequency -less than 1rad/s- components omitted). 
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The cost function is defined as: 
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Where ̂  is the estimated parameters vector. 

Then it can be shown that the estimated parameters which 

minimize J can be calculated recursively according to [12]: 
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   (5)  

Using this algorithm the discrete transfer function 

( ) ( ) / ( )g z n z d z  can be estimated. 

A problem with typical least squares algorithms is that 

prior knowledge of the structure of the regression model is 

required. That is, the number of zeros and poles should be 

known. Although, the zero/pole structure may be known 

from theoretical models, it is desirable for an experimental 

identification exercise to identify the possible existence of 

additional non-modeled dynamics. Therefore, an 

experimental process for the establishment of an adequate 

zero/pole structure was devised. 

Firstly, a series of zero/pole combinations were identified. 

In particular all the realizable zero/pole combinations up to 

15 poles were identified. That is 1 pole/1 zero, 2 poles/1 

zero, 2 poles/2 zeros, 3 poles/1 zero… up to 15 poles/15 

zeros.  The best zero/pole structure was defined as the one 

with the less quadratic error. This can be considered as an 

auto-constructing identification scheme. That is, an 

identification scheme which automatically seeks the best 

possible model structure such as the cascade-correlation 

algorithm for neural networks [14]. 
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On the other hand, the static thrust identification revealed 

that the system contains a nonlinear static gain which can 

interfere with the linear least squares identification process. 

Therefore, in order to minimize this effect, the least squares 

identification procedure described in the last paragraph was 

applied over reduced fuel-flow ranges. These ranges are 

associated with the A,B,C,D,E,F thrust ranges of Fig. 2. 

Considering the least mean square error of all the ranges, the 

selected pole/zero structure was 15 poles/1 zero. 

Figure 6 shows the Bode plot of the identified discrete 

transfer functions for each operating range. Two 

observations can be made. The first simple observation 

confirms that the steady state gain is nonlinear and depends 

on the fuel-flow operating range. The second more 

complicated observation is related to the over-learning 

phenomenon which is commonly found on auto-constructing 

identification methods such as auto-constructing neural 

networks [10,11]. 

The over-learning phenomenon occurs when the  

auto-constructing identification method incorrectly increases 

the complexity of the system structure due to the noise 

present on the measured signals. In this case the 15 poles 

structure, which had the least quadratic error, is not 

necessarily related with actual process dynamics. Some of 

these modes may be related with the high level of noise on 

the measured signal. Moreover, by analyzing the signal 

spectrum the bandwidth of the measurement noise could not 

be properly determined. In Fig. 6 this effect can be observed 

as a high-frequency gain ripple. 

 

Fig. 6.   Bode diagram of the identified discrete transfer functions. 

A better interpretation of the problem can be made by 

observing the pole loci of the identified transfer functions. 

Fig. 7 shows the poles of all the discrete transfer functions 

obtained by the least squares identification process. 

 

Fig. 7.   Root loci of the poles of the identified discrete transfer functions 

Figure 7 clearly shows distinct pole groups at low 

frequencies. It was found that all the transfer functions 

shared poles in, at least, the first three pole groups which are 

contained in the set defined by the poles with an argument of 

less than 30
o
 and their complex conjugate pair. 

 This very revealing observation allowed introducing a 

model reduction akin to a frequency filter (albeit nonlinear). 

Recall that the argument of discrete poles may be written as 

T   were   is the natural damped oscillation frequency 

in rad/s and T is equal to the sampling period. Therefore, by 

limiting the maximum allowed pole argument a frequency 

limit can be imposed. 

According the last discussion, a model reduction in which 

the poles with argument of more than 30
o
 and their complex 

conjugate pair were eliminated was applied to all the 

identified discrete transfer functions. The next figure shows 

the resulting pole loci of the reduced models. 

 

Fig. 8.   Root loci of the poles of the reduced discrete transfer functions 

The resulting effect of the model reduction can be 

assessed in Fig. 9 which shows the Bode diagram of the 

reduced models. These can be directly compared with the 

original systems (Fig. 5).  
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Fig. 9.   Bode diagram of the reduced discrete transfer functions. 

 An additional assessment of the effect of the model 

reduction is presented in Fig. 10 where the time responses of 

the original identified transfer functions and the 

corresponding reduced system are shown. It is clear that the 

original system has oscillations which are most certainly due 

to over-learning because of the noise in the measured thrust 

(see Fig. 6) and a possible time delay. On the other hand the 

reduced system retains the main establishing time 

characteristics while eliminating the unwanted oscillations. 

 

Fig. 10.   Step responses of a reduced and non-reduced transfer function 

 By applying the model reduction method discussed in the 

last paragraphs, a set of normalized linear systems was 

derived, these systems (listed in Table I) can be used 

together with the nonlinear hysteresis gains of eq. (1) as a 

complete model of the process. The fuel-flow ranges are 

related with the thrust of Fig. 2. In addition, Table I contains 

the equivalent continuous-time transfer functions of the 

identified systems. These transfer functions were calculated 

considering a zero order hold Z-Transform method. 

 Finally it is possible to derive a global approximation for 

the system by calculating the average model for all the 

operating ranges. In addition, the average of the nonlinear 

hysteresis curves can also be used. This results on the 

following global model: 
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Where ( )hT s  is the Laplace transform of ( )ht t , ( )ht t  is the 

normalized thrust, ( )m fF F  is eq. (2), ( )fF s is the Laplace 

transform of the fuel-flow and ( )hT t  is the resultant thrust. 

Table I 

Step Fuel Flow 

Range 

(Gal/hr) 

Discrete Transfer 

Function   

T= 0.076s 

Unitary  Transfer 

Function S 
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3 2
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2

3 2
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77.32 426.6 3163 3702
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V. VALIDATION 

The resulting global model (6) represents a compact, yet 

powerful, model of the gas turbine engine. In order to 

validate its accuracy the following comparisons were made. 

Firstly, the model was validated by comparing the 

simulated response of system (6) and the stair input 

experiment. This comparison is shown in Fig. 11. This 

figure shows a high degree of accuracy on transient and 

steady state characteristics. Nonetheless a different 

experiment should be used to asses if the over-learning 

effect was successfully eliminated. 

 

Fig. 11.   Comparison between model (6) and the experimental response. 

 An additional experiment which includes a high degree of 

transient operations was realized and compared with model 

(6). The resulting responses are shown in Fig. 12. This figure 

shows that the global model is highly accurate for all the 

operating range in both transient and dynamic 

characteristics. 
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Fig. 12.   Comparison between model (6) and the experimental response. 

VI. CONCLUSION 

The flow-rate to thrust dynamical model of a laboratory 

gas-turbo engine was identified and validated using real time 

experimental data. An identification process which consisted 

of the estimation of the static and dynamic characteristics of 

the process was performed. 

The static identification consisted on collecting data at 

several operating ranges. It was observed that the static 

behavior of the system included a nonlinear hysteresis loop 

which was also characterized. 

The measurement signal was contaminated with high level 

sensor noise, common to all load cell measurements. The 

nature of the measurement noise was investigated and it was 

determined that is was not possible to attenuate the noise 

with a linear filter. 

A series of linear models were estimated using the 

recursive least squares method. These models were obtained 

for different operating ranges. The results obtained show that 

the static gain value depends on the operating condition. A 

self-constructing algorithm, based on the least square error, 

was used in order to determine the zero/pole structure of the 

system. 

Further analysis showed that the resulting zero/pole 

structure was sensible to the measurement noise, which 

causes the over-learning phenomenon. A method to reduce 

the order of the identified systems was devised. It was 

concluded that the fuel-flow rate to thrust dynamical model 

may be modeled accurately by third order system. 

Finally, a nonlinear gain whose value depends on the 

operating condition, derived from the static hysteresis, can 

be added to the mean linear system in order to define a 

simplified global approximation. 

Further experiments showed that the global approximation 

gives very accurate prediction of the real thrust both in static 

and transient regimes. 
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